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Abstract. On the basis of a perturbative-variational approach, the polaron effect on the 
ground-state energy of the two-dimensionally confined exciton is analysed in the overall 
range of the parameters characterising the problem. With particular attention devoted to 
the GaAs-based quantum structure, it is seen that the phonon-induced effects on the binding 
are rather noticeable and should not be ignored. 

1. Introduction 

Recently, the study of quasi-two-dimensional Wannier excitons has become a subject 
of interest in the context of quantum-well confinement of bound states in heterostructure- 
type semiconductor complexes. With particular emphasis given to the GaAs-GaAlAs 
system, the common conclusion reached in therelevant works is that the excitonic energy 
levels become deepened by appreciably large factors over the corresponding bulk values 
(Bastard eta1 1982, Greene and Bajaj 1983, Greene et a1 1984, Jiang 1984). For the case 
of infinite confining barriers for the electron and the hole, it has been well established 
that the binding energy approaches four times the bulk effective rydberg when the 
exciton motion is strictly two-dimensional, 

A further, yet interesting, aspect that deepens the binding is the contribution coming 
from exciton-phonon coupling. Recent calculations performed along this line (Ergelebi 
and Ozdinger 1986, Degani and Hip6lito 1987a, b) have revealed that the combined 
effect of phonon coupling together with the confinement achieved by the reduction in 
the effective dimensionality of the system leads to rather noticeable polaronic enhance- 
ments in the binding. In all the aforementioned work the calculations have been restricted 
solely to parameter values pertinent to GaAs, disregarding a more complete view of the 
polaron effect beyond that given for the GaAs-based quantum structure. We therefore 
would like to look at the problem somewhat differently using a perturbation-variation 
approach previously used by Devreese et a1 (1982) in their study of a bound polaron. 
This method has the advantage of being applicable in the overall range of Coulomb 
binding and phonon coupling parameters. An adiabatic (strongly coupled) excitonic 
state combined with a first-order perturbative correction is used as a variational 
wavefunction by which it is possible to achieve a smooth extrapolation towards the weak- 
coupling regime. 

Obviously, with the inclusion of electcon(ho1e)-phonon interactions, the problem 
becomes much more complicated compared to the bare exciton case. The effect of the 
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lattice polarisation field brings about interesting and distinctive features in the various 
regimes of the problem characterised by the strength of phonon coupling and the 
Coulomb potential, and further by the well width, all of which enter the theory in rather 
involved and inter-related manners. The quantitative analysis of the problem thus 
becomes somewhat challenging, and therefore we are tempted to utilise an artificially 
simple model where the exciton wavefunction is taken to be purely two-dimensional. 
As such, the primary and essential approximation adopted in this work is to take into 
account only the two-dimensional nature of the dynamical behaviour of the electron- 
hole complex in a thin quantum well, and thus eliminate the extra difficulty in the 
mathematical structure of the problem comprised by the third dimension. This, besides 
facilitating our calculations, provides a means by which one can study the significance 
of, or at least the order of magnitude of, the polaron effect when the exciton gets squeezed 
between the confining barriers, In fact, the strict two-dimensional approximation for 
the spatial extent of the electron (coupled to bulk phonons) has already been used for 
the free- and bound-polaron problems in order to give some insight into the qualitative 
aspects of the polaron effect in confined structures (Das Sarma and Mason 1985, Mason 
and Das Sarma 1986). Following the same line, we thus take the particle part of the trial 
state to depend on thex and y coordinates only, and leave out the third spatial dimension. 
At this point we feel that regarding the z coordinate as being completely separable (as 
confirmed by Bastard et aZ(l982) for bare excitons in narrow quantum wells), or totally 
ignoring it, is not expected to result in drastic alterations in the qualitative fundamentals 
of the problem. Meanwhile, we cannot still deny the possibility that, as the phonon 
coupling is turned on, the transverse coordinates may become incorporated with the z 
direction. This, in fact, may lead to further interesting features, which we do not want 
to discuss at this point. For the present, we shall be content with the two-dimensional 
formulation of the problem, and retain the discussions pertaining to finite well widths 
until the last section of this paper. 

In summary, the model we use consists of a purely two-dimensional characterisation 
of the electron-hole pair immersed in the field of bulk LO phonons of the relevant well 
material. It should be emphasised that for the present we have refrained from including 
the coupling of the exciton to the interface phonon modes because only then can a direct 
correspondence of our two-dimensional predictions be made with the results derived 
previously for the bulk case (Pollmann and Biittner 1977) where the interface phonons 
are totally absent. More explicitly, our main concern is primarily to give a clear view of 
the bulk-phonon effects stripped from all other perturbing quantities. Apart from 
omitting the contribution that may come from the interface optical phonons, we have 
also ignored any screening effects and further complications such as those due to the 
band non-parabolicity or the loss of validity of both the effective-mass approximation 
and the Frohlich continuum Hamiltonian in ultra-thin microstructures. Nevertheless, in 
view of all these simplifying assumptions we still bear the hope that our results should 
shed some light on the polaron effect on the exciton-phonon system in a quantum-well 
confinement. We furthermore believe that the formalism followed in this work provides 
an appropriate way to account for the interesting mutual influence of the polarisation of 
the electron and the hole whose crucial significance has already been raised by Pollmann 
and Biittner (1977) in three dimensions. 

2. Theory 

The Hamiltonian describing a Wannier exciton confined in two dimensions and inter- 
acting via the Frohlich Hamiltonian with the bulk LO phonons can be expressed, using 
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where s2 = mh/(me + mh), s2 = m,/(m, + mh) and a = me/mh is the electron-hole eff- 
ective-mass ratio. The interaction amplitude for the exciton and the phonon field is 
related to the phonon wavevector Q ( q,  qz) and the coupling constant a through VQ = 
(4m~)"~/Q. The strength of the Coulomb potential between the electron and the hole 
is given by 

in terms of which the two-dimensional effective rydberg and the corresponding Bohr 
radius are 

RZD = (1 + C T ) - ~ , ~ '  a 2 D  = (1 + a),8-'. (3) 
In the above, energies have been scaled by f iwo and lengths by (fi/2m,oo)1i2 with coo 
being the LO phonon frequency. 

Since the Hamiltonian is invariant under translations of the centre of mass and the 
lattice distortion together, it is possible to transform to a representation in which the 
centre-of-mass coordinates do not appear. Under the unitary transformation 

the Hamiltonian takes the form 

- 2 VQ ( U Q  e -'zq'r - Cc) + [O/(C7 + I)] 2 2 Q ' Q f U b U & ,  U Q U  Q ,  ( 5 )  
Q Q Q' 

H o  = - (a  + 1)vt - P/r  
with ye = 1 + [a/(a + l)]Q2. The phonon correlation term will be omitted in the fol- 
lowing formulation of the theory (Wang and Matsuura 1974). 

Regardless of the parameter values characterising the exciton-phonon system, the 
starting step is the usual canonical transformation of the strong-coupling formalism. The 
theory is based on utilising a product wavefunction of the form (Devreese et a1 1982) 

together with the displaced phonon state operator 

D = e' 

u p  = (q(r)I(eklqP" - e-'2q">Iq(r)). 

s = 2 ( v Q ~ Q / Y Q ) ( ~ Q  - a h >  
Q 

in which 

In the above, IO) is the phonon vacuum, q ( r )  is the exciton internal wavefunction, c is a 
constant which serves for normalisation, and 

OQ. (9) vQ = eislq.r - e-L2~.r - 
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The remaining symbol gQ in the trial state is to be determined variationally and gives the 
fractional admixture of the srrong- and weak-coupling counterparts of the theory. 

At this point it should be mentioned that gQ bears a crucial importance for the 
present problem since the weak-coupling regime is readily attained even for strong 
electron(ho1e)-phonon interactions. In tightly bound electron-hole pairs (i.e. for not 
too weak p) , the mutual interaction between the oppositely charged particles is expected 
to result in partial annihilation of the lattice polarisations created by either particle. 
Thus, even for a large a, the influence of the lattice polarisation on the interacting 
electron-hole pair may become considerably reduced and therefore, without the cor- 
rection term in the trial state (6), one cannot achieve a satisfactory description of the 
polaronic aspects of the coupled exciton-lattice system. The same is true also for the 
case of equal-mass particles (sl = s2), which, in the strict adiabatic treatment, exhibit 
the properties of a bare exciton. 

An optimal fit to g Q  is obtained by minimising the expected value of D-lH'D in the 
state (6) subject to the constraint 

At this stage we adopt a variational form for the exciton internal wavefunction ~ ( r ) .  
As the simplest reasonable approximation, we shall use the two-dimensional Is state, 
which we believe is well suited for the calculation of good upper bounds to the ground- 
state energy of the exciton-phonon system: 

wherein A is a further adjustable parameter goterning the spatial extent of the exciton 
wavefunction. With this choice we obtain 
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where we have defined 

N(x) = [1 + (A/2)2x*]-’/2 

Furthermore, for the set of equations (15)-(18) we have the following functional 
forms: 

eo = (a + 1)/A2 - 2g/A 

x0 = a/% d q o i ( 1  - q/[q2  + (a + 1)/~7]’/~} 
0 

3. Results and discussion 

With the inclusion of phonon coupling, the exciton problem becomes extended to the 
case of two interacting polarons where the properties of the electron-hole pair become 
strongly modified by the polarisation field. In this part of the work we analyse the phonon 
effects on the ground-state property as a function of the parameters characterising the 
exciton-phonon system. 

Before doing so, however, we would like to make a small digression and give a 
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Figure 1. The ground-state energy versus the Coulomb strength. The lower (upper) curve is 
for the case with (without) phonon coupling. The inset (AEversus p 2 )  provides acomparison 
of the present theory (lower curve) with the approximate formula (32) (upper curve). 

comment on the basic distinction that sets the present approach apart from the strong- 
coupling theory. It should be noted that, omitting the perturbative correction x in 
equation (12), we arrive at the strong-coupling results for the ground-state energy with 
AE = xo. Regardless of the values of a a n d  p, we trivially obtain oQ = 0 and hence AE = 
0 for equal-mass particles since, when (T = 1, the net charge density of the oppositely 
charged particles is exactly zero. This, however, is an artifact of the adiabatic approxi- 
mation where the lattice is taken to be responding to the average charge-density fluc- 
tuations of the pair rather than the individual kinetics of the particles. We thus readily 
note that the essential role which parameterxplays in the theory becomesvery prominent 
in all cases where the adiabatic theory becomes inadequate. It is in fact through this 
parameter that the theory sets up a weighted average incorporating the weak- and strong- 
coupling aspects of the problem. Particularly for the exciton problem where mostly the 
weak-coupling aspect is dominant, the present formulation proves to be superior in all 
respects to the strong-coupling approximation and yields comparatively deeper binding. 

Studying first the a-dependence in equation (12), we find that the polaronic shift in 
the binding energy, A E  = IE - E(& = O)l,  increases almost linearly with the coupling 
constant. Taking /3 = 1 and o = 1, for instance, we obtain A E  -- 0.0197, 0.0495 and 
0.0986, respectively, for a = 0.02,0.05 and 0.10, amounting to a percentage deepening 
in the binding by 3.9%, 9.9% and 19.7%. We also note that the linear character in the 
a-dependence of the polaron effect is not altered by changing the mass ratio or the 
strength of the Coulomb potential. 

Confining our discussions to the P-dependence, we observe that A E  decreases 
steadily with increasingp, since for a small-size complex the lattice polarisations interfere 
destructively and eventually become totally annihilated. This feature is displayed 
explicitly in figure 1 where we plot the ground-state energy profile for both the bare ( a  = 
0) and polaronic ( a  = 0.1) excitons. We find that the phonon coupling contributes to 
the ground-state energy by considerably large factors for weak Coulomb potentials. 
With o = 1, the energy becomes lowered by factors of about 2.4 and 1.5 for p2 = 0.2 
and 0.5, respectively. For stronger binding the phonon contribution rapidly loses its 
prominence and becomes as small as 2% for p' = 5. 

At this point it should be noted, however, that the aforementioned large factors by 
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Figure 2. The ground-state energy versus the mass ratio. The solid curves B and P are for 
the bare and polaronic excitons, respectively. The broken curve displays the results of the 
strong-coupling polaron theory. The dottedcurve is for the relative phonon shift. The arrows 
are aimed at the values for the light (a = 0.32) and heavy (a = 0.66) hole excitons in GaAs. 
The scale on the left (right) is for the ground-state energy (the relative polaron shift). 

which the energy deepens may be misleading since A E  includes implicitly some fraction 
of the self-energies of the electron and hole polarons. In fact the percentage of the self- 
energy (-na/2) of either polaron that plays a significant role in the binding and the 
percentage that can be regarded as separable are governed mostly by p, and further by 

For the case when the inter-particle separation is taken to be artificially large, the 
qualitative features of the complex become considerably simplified. In this case the 
electron and hole polarons can be visualised as orbiting about one another with almost 
no overlapping parts and, therefore, for the polaron shift we write 

wherein we have scaled the bare rydberg (3) by replacing the electron mass by the 
polaron mass mp = (1 + na,%)m,. Clearly, the approximate formula given above is 
intended to work fairly well only when the polarons are thought to be completely 
separated. With growing p, it becomes no longer valid and exhibits a drastically large 
deviation from the actual behaviour as exemplified by the present theory (cf the inset of 
figure 1). This in fact indicates that the overlapping polaron effects are extremely 
important and alter the qualitative aspects of the phonon contributions to the problem. 

A further point of view giving more impact into the partial overlap between the 
polaron clouds is achieved by examining the ground-state energy as a function of the 
mass ratio. In figure 2 we make plots for the cases with and without phonon coupling, 
including as well the results of the adiabatic theory for completeness. In our numerical 
computations we have selected a = 0.07 and p2 = 0.65, appropriate for GaAs where 
noo = 35 meV is the unit of energy. A careful examination of the curves B and P, 
corresponding to the bare and polaronic excitons, reveals the following salient features. 
We at once observe that, as the mass ratio is varied from a small value to unity, the 
phonon-induced shift in the ground-state energy becomes reduced monotonically. This 
follows essentially from the fact that, with increasing U, the size of the complex grows 
larger, resulting in weaker binding and hence in a weaker polaron effect. The con- 
sequences brought about by the decrease in th? degree of localisation of the system are 

(5. 

AE = na[l + Q(1 + u)-'p2] (32) 
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however twofold. A contrasting aspect is that, as the exciton size is made larger, the 
destructive interference effects become less significant and, as a result, the self-energies 
of the polarons take part in the binding in a more efficient way. Thus, the two competitive 
aspects bring out a further interesting feature in the profile of the polaron effect as a 
function of the mass ratio. Considering the relative shift AE/RZD rather than AE itself 
(cf the dotted curve in figure 2), we see that the phonon-induced contribution goes 
through a minimum at about a = 0.3. Starting from a = 1, the effect of the overlap 
between the polaron clouds dominates first leading to a reduction in AE/RZD. Mean- 
while, as the mass ratio is shifted down to small values the effect of localisation starts to 
show up and for a < 0.3 the exciton gets sufficiently localised so as to result in an overall 
enhancement in the relative phonon shift in the binding. 

Having retrieved the basic qualitative aspects of the problem in two dimensions, we 
now make some correspondence with the GaAs-based quantum structure. It should be 
evidently clear that a totally satisfying comparison of our results with the experimental 
observations is rather impossible at this stage. The main reason for this is that the strictly 
two-dimensional approximation we have adopted is only interesting from a formal point 
of view and cannot produce an accurate physical picture for finite-width quantum wells. 
However, some insight can still be achieved from a qualitative viewpoint providing a 
conformation of the two-dimensional results to finite well widths. Starting from the two- 
dimensionally localised case and going to the bulk limit, the effective phonon coupling is 
expected to decrease significantly, since relaxing the system in the third spatial dimension 
leads to comparatively weaker binding. The important question at this point is whether 
or not the polaron effect falls off rapidly as the well width is introduced into the problem 
as a further parameter. Such a possibility has in fact been realised previously for the 
donor complex (Erselebi and Siialp 1987), where it has been observed that the polaron 
shift in the ground level lies far below its two-dimensional value and is even smaller than 
in the bulk except for too narrow wells. We feel that this feature should not totally reflect 
the present case since the exciton problem has a distinguishing counterpart which has 
already been mentioned in the discussion for the a-dependence. In the meantime AE 
tends to become smaller owing to the reduction in the degree of confinement, and the 
amount by which the polaron clouds overlap diminishes, resulting in a greater fraction 
of the polaron self-energies taking part in the binding. We thus expect that the rate at 
which the polaron effect loses its significance should not be as rapid as in the donor case. 

With parameter values appropriate for GaAs we find that the polaronic deepening 
in the two-dimensional ground-state energy is as large as 20%, giving an indication in 
favour of a non-negligible polaron effect in thin quantum wells. For the heavy(1ight)- 
hole exciton we take the reduced mass in the xy plane to be ,U = 0.04 (0.05). It then 
followsthat a = (m,/p) - 1 = 0.66(0.32),yieldingE -- -13.8(-17.3)meVforthebare 
exciton and E -- -16.7 (-20.7) meV when phonon coupling is included. It should be 
emphasised that the effective transverse-mass values employed in the calculation are 
those which are commonly used in the literature for bulk GaAs. There is in fact some 
degree of uncertainty in our values for the binding energy owing to the ambiguities in 
the relevant parameter values brought about by quantum confinement (see, for instance, 
Maan et a1 1984, Rogers et a1 1986). Yet another aspect that casts further doubt on 
correlating our results with experiment is the uncertainty in the percentage enrolment 
of the polaron self-energies which actually contributes to the observable binding energy. 
Nevertheless, in spite of these drawbacks we still feel that the results of the present work 
give enough evidence to account for some part of the large discrepancy between the 
experimental binding energy and the theoretical predictions made for the bare exciton 
case. 
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